
.DataPlatform v22.1
This manual describes how to install and set up eccenca DataPlatform.It is intended for system administrators, who are responsible for installing,
configuring, maintaining and supporting the deployment of DataPlatform.

To use this manual, system administrators should have knowledge about Linux (Ubuntu) and the installation environment on which DataPlatform is
deployed.

DataPlatform provides a basic default configuration. The default configuration can be changed by defining properties for the intended use. The properties
defined overwrite the respective properties from the default configuration.

In this manual, syntax is used to define those properties as the default configuration file format. Key/value pairs stored in a (.properties) YAML property file
are also a valid option.

The following example shows a YAML-based configuration:

foo:
 bar:
 - id: id1
 label: label1
 - id: id2
 label: label2

In the following example, the same configuration is represented as key/value pairs in a properties file:

foo.bar[0].id = "id1"
foo.bar[0].label = "label1"
foo.bar[1].id = "id2"
foo.bar[1].label = "label2"

logging:
 level:
 root: "OFF"

License

By default, DataPlatform is subject to the eccenca free Personal, Evaluation and Development License Agreement (PEDAL), a license intended for non-
commercial usage. When your delivery includes a dedicated license file, you have to configure DataPlatform to enable your license. To change the default
configuration, you have several options that are described in .License configuration

License configuration

license
key
file

Property license

Use this root property and its sub-properties for the license configuration. If this root property is not configured, the default license included (PEDAL) is
used.

Property license.key

Default none

Required no

Note: You cannot combine both formats, so either provide a YAML (.yml) or property file.

Note: YAML maps to so make sure to add quotes if you want to disable logging:OFF FALSE

http://yaml.org/
https://en.wikipedia.org/wiki/.properties#Format

1.
2.
3.
4.

Conflicts with license.file

Valid values PGP Key (Message)

Use this property to specify the license key as a value of the property:YAML multiline string license.key

license:
 key: |
 -----BEGIN PGP MESSAGE-----
 ...
 ...
 ...
 -----END PGP MESSAGE-----

Property license.file

Default none

Required no

Conflicts with license.key

Valid values location of the license file

Use this property to specify the location of the license file:

license:
 file: PATH_TO_LICENSE_FILE

License evaluation order

In case a dedicated license file is used, different configuration options can overwrite each other. The license is read in the following sequence:

license.key property
license.file property
license.asc file in the same folder, where the application is started from (in)Standalone Mode
Fallback to eccenca free Personal, Evaluation and Development License Agreement (PEDAL)

SPARQL endpoints

SPARQL endpoints declare how DataPlatform connects to a SPARQL-capable store or service. This includes stores that are capable of reading and
writing RDF such as Virtuoso as well as read-only services like remote SPARQL HTTP endpoints (e.g. DBpedia).

With the default configuration, DataPlatform uses an in-memory database. This means, that no persistent storage is available, unless a store supporting
data persistence is configured.

This table shows the supported SPARQL endpoint types together with the supported features:

Feature GraphDB AWS Neptune Stardog Virtuoso HTTP In-memory

Persistent storage Yes Yes Yes Yes Yes -

Read access Yes Yes Yes Yes Yes Yes

Write access Yes Yes Yes Yes Yes Yes

Rewrite authorization Yes Yes Yes Yes Yes Yes

Provisioned authorization - - Yes Yes - -

Authorization strategies

DataPlatform supports the following authorization strategies:

NONE: Do not use authorization for this endpoint (default).
REWRITE_FROM: SPARQL FROM-clause rewriting used as authorization strategy for this endpoint.

Note: The support to configure and connect to multiple SPARQL endpoints with a single DataPlatform instance will be removed in a future
release.

http://yaml.org/spec/1.1/#id928909

PROVISIONED: Authorization provisioned by the triple store. For productive setups, set a . Treat this parameter as secretly userPasswordSalt
as the triple store administration password.

GraphDB

Use the following set of properties to connect to a server using HTTP.GraphDB

The section provides more information on prerequisites for Stardog endpoint configuration.GraphDB setup

GraphDB configuration

sparqlEndpoints:
graphdb:

id
authorization
host
port
database
username
password
userPasswordSalt
sslEnabled
updateTimeoutInMilliseconds
connectionPool

maxConnectionsPerUser
maxIdleConnectionsPerUser
maxIdleMilliseconds
maxWaitMilliseconds

Property sparqlEndpoints.graphdb[0].id

Default none

Required yes

Conflicts with other IDs, must be unique

Valid values string

Use this property to specify the ID of the in-memory endpoint. This ID can be user-defined and must be unique.

Property sparqlEndpoints.graphdb[0].authorization

Default NONE

Required no

Conflicts with none

Valid values NONE, REWRITE_FROM

Use this property to specify the authorization strategy as explained in section .Authorization strategies

When setting the strategy to , each user context will get its own dedicated GraphDB user; when setting the strategy to any other value, all PROVISIONED
user requests will use the same GraphDB user. This has an impact on connection pooling configuration (, maxConnectionsPerUser maxIdleConnectionsPer

). If is set, these values should fit the expected number of parallel requests per unique user. Otherwise they should fit the expected User PROVISIONED
number of overall parallel requests.

Property sparqlEndpoints.graphdb[0].host

Default none

Required yes

Conflicts with none

Valid values string

Use this property to configure the hostname of the GraphDB server.

Be aware that when authorization for an endpoint is NONE, the user gets administrator permissions which means for example the user can
grant permissions and is allowed to do any action.
Therefore the NONE strategy should only be used for demo or evaluation environments!

http://graphdb.ontotext.com/documentation/standard/

Property sparqlEndpoints.graphdb[0].port

Default none

Required yes

Conflicts with none

Valid values integer

Use this property to configure the port of the GraphDB server.

Property sparqlEndpoints.graphdb[0].database

Default none

Required yes

Conflicts with none

Valid values string

Use this property to configure the database to connect to.

Property sparqlEndpoints.graphdb[0].username

Default none

Required yes

Conflicts with none

Valid values string

Use this property to configure the username with which the connection to the server is established.

Property sparqlEndpoints.graphdb[0].password

Default none

Required yes

Conflicts with none

Valid values string

Use this property to configure the password with which the connection to the server is established.

Property sparqlEndpoints.graphdb[0].userPasswordSalt

Default none

Required no

Conflicts with none

Valid values string

Use this property to configure the salt value used for internal user password generation. This property is only relevant if the is set to authorization PROV
.ISIONED

If not provided, a default internal value is used, which is not recommended in a production setup. Configure and treat this parameter with the same secrecy
as .password

Property sparqlEndpoints.graphdb[0].sslEnabled

Default false

Required no

Conflicts with none

Valid values Boolean

Use this property to enable encrypted data transfer from and to the GraphDB server. If enabled, the configured must be the GraphDB SSL port and port
the server must be properly configured for this purpose. Refer to section .GraphDB setup

Property sparqlEndpoints.graphdb[0].updateTimeoutInMilliseconds

Default 0

Required no

Conflicts with none

Valid values long

Use this property to set the upper bound for update operation execution time. If an update request consists of multiple update operations, the timeout
applies to each update operation individually. To support this, the GraphDB server must be properly configured. Refer to section .GraphDB setup

Property sparqlEndpoints.graphdb[0].connectionPool.maxConnectionsPerUser

Default 1000

Required no

Conflicts with none

Valid values integer

Use this property to configure the maximum amount of parallel open connections for a user provided by the pool. A negative value will remove the
connection pool maximum size limitation. Notice that in and authorization strategies there is only one user for connection pooling REWRITE_FROM NONE
purposes. See the property description for more information.authorization

Property sparqlEndpoints.graphdb[0].connectionPool.maxIdleConnectionsPerUser

Default 1

Required no

Conflicts with cannot be larger than maxConnectionsPerUser

Valid values integer

Use this property to configure the maximum amount of idle connections (connections returned to the pool and kept open for faster connection providing) for
a user. Notice that in and authorization strategies there is only one user for connection pooling purposes. See the REWRITE_FROM NONE authorization
property description for more information.

Property sparqlEndpoints.graphdb[0].connectionPool.maxIdleMilliseconds

Default 60000

Required no

Conflicts with none

Valid values integer

Use this property to configure the maximum amount of time that a connection is allowed to idle until it is closed.

Property sparqlEndpoints.graphdb[0].connectionPool.maxWaitMilliseconds

Default 10000

Required no

Conflicts with none

Valid values integer

Use this property to configure the maximum amount of time that a request is blocked waiting for a connection to be provided by the pool when its maximum
capacity is reached. On timeout, the user gets an error response.

Configuration example

sparqlEndpoints:
 graphdb:
 - id: "default"
 authorization: REWRITE_FROM
 host: "http://store:7200"
 repository: "cmem"
 username: "admin"
 password: "changeme"

AWS Neptune

Use the following set of properties to connect to a triple store.AWS Neptune

AWS Neptune configuration

sparqlEndpoints:
neptune:

id
authorization
host
port
aws:

region
authEnabled

s3:
bucketNameOrAPAlias
iamRoleArn
bulkLoadThresholdInMb
bulkLoadParallelism

Property sparqlEndpoints.neptune[0].id

Default none

Required yes

Conflicts with other IDs, must be unique

Valid values string

Use this property to specify the ID of the in-memory endpoint. This ID can be user-defined and must be unique.

Property sparqlEndpoints.neptune[0].authorization

Default NONE

Required no

Conflicts with none

Valid values NONE, REWRITE_FROM

Use this property to specify the authorization strategy as explained in section .Authorization strategies

Property sparqlEndpoints.neptune[0].host

Default none

Required yes

Conflicts with none

Valid values string

Use this property to configure the hostname of the server.

Property sparqlEndpoints.neptune[0].port

Default none

Required yes

https://aws.amazon.com/neptune/

Conflicts with none

Valid values integer

Use this property to configure the port of the server.

Property sparqlEndpoints.neptune[0].aws.region

Default none

Required yes

Conflicts with none

Valid values string

Use this property to configure the AWS Region where Neptune cluster is located i.e. "eu-central-1".

Property sparqlEndpoints.neptune[0].aws.authEnabled

Default none

Required yes

Conflicts with none

Valid values Boolean

Boolean value on whether IAM DB authentication is enabled on Neptune cluster. DataPlatform uses AWS default mechanism on supplying AWS IAM
credentials ().https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/credentials.html#credentials-chain

Property sparqlEndpoints.neptune[0].s3.bucketNameOrAPAlias

Default none

Required no

Conflicts with none

Valid values string

Use this property to configure the name of the S3 bucket or access point alias for bucket (bucket needs to be in configured region).

Property sparqlEndpoints.neptune[0].s3.iamRoleArn

Default none

Required no

Conflicts with none

Valid values string

Use this property to configure the role which has read access to the bucket (neptune cluster must assume this role to read from S3 for bulk loading).

Property sparqlEndpoints.neptune[0].s3.bulkLoadThresholdInMb

Default 150

Required no

Conflicts with none

Valid values integer

Use this property to set the limit on how much data of a GSP request (i.e. graph) is uploaded to neptune via HTTP (default 150). If limit is exceeded S3
bulk loading will be applied, the maximum working value for limit is 150 MB as this is Neptune limit for HTTP uploads (s. https://docs.aws.amazon.com

)./neptune/latest/userguide/limits.html

Property sparqlEndpoints.neptune[0].s3.bulkLoadParallelism

Default LOW

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/credentials.html#credentials-chain
https://docs.aws.amazon.com/neptune/latest/userguide/limits.html
https://docs.aws.amazon.com/neptune/latest/userguide/limits.html

Required no

Conflicts with none

Valid values LOW, MEDIUM, HIGH, OVERSUBSCRIBE

Use this property to configure the level of parallelism for bulk loading to Neptune, affects CPU usage. One of LOW, MEDIUM, HIGH, OVERSUBSCRIBE.

Configuration example

sparqlEndpoints:
 neptune:
 - id: neptune
 authorization: REWRITE_FROM
 host: <your-neptune-sparql-endpoint-uri>
 port: 8182
 aws:
 region: eu-central-1
 authEnabled: true
 s3:
 bucketNameOrAPAlias: <your-s3-bucket-name>
 iamRoleArn: <your-s3-iam-role>
 bulkLoadThresholdInMb: 150
 bulkLoadParallelism: HIGH

Stardog

Use the following set of properties to connect to a server using HTTP.Stardog

The section provides more information on prerequisites for Stardog endpoint configuration.Stardog setup

Stardog configuration

sparqlEndpoints:
stardog:

id
authorization
host
port
database
username
password
userPasswordSalt
sslEnabled
updateTimeoutInMilliseconds
connectionPool

maxConnectionsPerUser
maxIdleConnectionsPerUser
maxIdleMilliseconds
maxWaitMilliseconds

Property sparqlEndpoints.stardog[0].id

Default none

Required yes

Conflicts with other IDs, must be unique

Valid values string

Use this property to specify the ID of the in-memory endpoint. This ID can be user-defined and must be unique.

Property sparqlEndpoints.stardog[0].authorization

Default NONE

Required no

Conflicts with none

Valid values NONE, PROVISIONED, REWRITE_FROM

http://docs.stardog.com/

Use this property to specify the authorization strategy as explained in section .Authorization strategies

When setting the strategy to , each user context will get its own dedicated Stardog user; when setting the strategy to any other value, all PROVISIONED
user requests will use the same Stardog user. This has an impact on connection pooling configuration (, maxConnectionsPerUser maxIdleConnectionsPerU

). If is set, these values should fit the expected number of parallel requests per unique user. Otherwise they should fit the expected ser PROVISIONED
number of overall parallel requests.

Property sparqlEndpoints.stardog[0].host

Default none

Required yes

Conflicts with none

Valid values string

Use this property to configure the hostname of the Stardog server.

Property sparqlEndpoints.stardog[0].port

Default none

Required yes

Conflicts with none

Valid values integer

Use this property to configure the port of the Stardog server.

Property sparqlEndpoints.stardog[0].database

Default none

Required yes

Conflicts with none

Valid values string

Use this property to configure the database to connect to.

Property sparqlEndpoints.stardog[0].username

Default none

Required yes

Conflicts with none

Valid values string

Use this property to configure the username with which the connection to the server is established.

Property sparqlEndpoints.stardog[0].password

Default none

Required yes

Conflicts with none

Valid values string

Use this property to configure the password with which the connection to the server is established.

Property sparqlEndpoints.stardog[0].userPasswordSalt

Default none

Required no

Conflicts with none

Valid values string

Use this property to configure the salt value used for internal user password generation. This property is only relevant if the is set to authorization PROV
.ISIONED

If not provided, a default internal value is used, which is not recommended in a production setup. Configure and treat this parameter with the same secrecy
as .password

Property sparqlEndpoints.stardog[0].sslEnabled

Default false

Required no

Conflicts with none

Valid values Boolean

Use this property to enable encrypted data transfer from and to the Stardog server. If enabled, the configured must be the Stardog SSL port and the port
server must be properly configured for this purpose. Refer to section .Stardog setup

Property sparqlEndpoints.stardog[0].updateTimeoutInMilliseconds

Default 0

Required no

Conflicts with none

Valid values long

Use this property to set the upper bound for update operation execution time. If an update request consists of multiple update operations, the timeout
applies to each update operation individually. To support this, the Stardog server must be properly configured. Refer to section .Stardog setup

Property sparqlEndpoints.stardog[0].connectionPool.maxConnectionsPerUser

Default 1000

Required no

Conflicts with none

Valid values integer

Use this property to configure the maximum amount of parallel open connections for a user provided by the pool. A negative value will remove the
connection pool maximum size limitation. Notice that in and authorization strategies there is only one user for connection pooling REWRITE_FROM NONE
purposes. See the property description for more information.authorization

Property sparqlEndpoints.stardog[0].connectionPool.maxIdleConnectionsPerUser

Default 1

Required no

Conflicts with cannot be larger than maxConnectionsPerUser

Valid values integer

Use this property to configure the maximum amount of idle connections (connections returned to the pool and kept open for faster connection providing) for
a user. Notice that in and authorization strategies there is only one user for connection pooling purposes. See the REWRITE_FROM NONE authorization
property description for more information.

Property sparqlEndpoints.stardog[0].connectionPool.maxIdleMilliseconds

Default 60000

Required no

Conflicts with none

Valid values integer

Use this property to configure the maximum amount of time that a connection is allowed to idle until it is closed.

Property sparqlEndpoints.stardog[0].connectionPool.maxWaitMilliseconds

Default 10000

Required no

Conflicts with none

Valid values integer

Use this property to configure the maximum amount of time that a request is blocked waiting for a connection to be provided by the pool when its maximum
capacity is reached. On timeout, the user gets an error response.

Configuration example

sparqlEndpoints:
 stardog:
 - id: stardog
 authorization: PROVISIONED
 host: localhost
 port: 5820
 database: database
 username: username
 password: password
 userPasswordSalt: $0M3Th1ng

Virtuoso

You can connect DataPlatform to an using a JDBC connection.OpenLink Virtuoso Universal Server

The section provides further information on prerequisites for Virtuoso endpoint configuration.Virtuoso Setup

Virtuoso configuration

sparqlEndpoints
virtuoso

id
authorization
host
port
username
password
userPasswordSalt
sslEnabled

Property sparqlEndpoints.virtuoso[0].id

Default none

Required yes

Conflicts with other IDs, must be unique

Valid values string

Use this property to specify the ID of the in-memory endpoint. This ID can be user-defined and must be unique.

Property sparqlEndpoints.virtuoso[0].authorization

Default NONE

Required no

Conflicts with none

Valid values NONE, PROVISIONED, REWRITE_FROM

Use this property to specify the authorization strategy as explained in section Authorization strategies.

Property sparqlEndpoints.virtuoso[0].host

Default none

Required yes

http://virtuoso.openlinksw.com/

Conflicts with none

Valid values string

Use this property to set the hostname of the Virtuoso server.

Property sparqlEndpoints.virtuoso[0].port

Default none

Required no

Conflicts with none

Valid values integer

Use this property to set the port of the Virtuoso server.

Property sparqlEndpoints.virtuoso[0].username

Default none

Required yes

Conflicts with none

Valid values string

Use this property to configure the username with which the connection to the server is established.

Property sparqlEndpoints.virtuoso[0].password

Default none

Required yes

Conflicts with none

Valid values string

Use this property to configure the password with which the connection to the server is established.

Property sparqlEndpoints.virtuoso[0].userPasswordSalt

Default none

Required no

Conflicts with none

Valid values string

Salt value used for internal user password generation. This property is only relevant if the property is set to .authorization PROVISIONED

If this property is not provided, a default internal value is used, which is not recommended in a production setup. Configure and treat this parameter with
the same secrecy as .password

Property sparqlEndpoints.virtuoso[0].sslEnabled

Default false

Required no

Conflicts with none

Valid values Boolean

Use this property to enable encrypted data transfer from and to the Virtuoso server. If enabled, the configured must be the Virtuoso SSL port and the port
server must be properly configured for this purpose. Refer to section Virtuoso setup.

Configuration example

sparqlEndpoints:
 virtuoso:
 - id: virtuoso
 authorization: PROVISIONED
 host: localhost
 port: 1111
 username: dba
 password: dba
 userPasswordSalt: $0M3Th1ng

Remote / HTTP

Use the following set of properties to connect to arbitrary .HTTP SPARQL services

Remote / HTTP configuration

sparqlEndpoints
http

id
authorization
queryEndpointUrl
updateEndpointUrl
graphStoreEndpointUrl
username
password

Property sparqlEndpoints.http[0].id

Default none

Required yes

Conflicts with other IDs, must be unique

Valid values string

Use this property to specify the ID of the HTTP endpoint.

Property sparqlEndpoints.http[0].authorization

Default NONE

Required no

Conflicts with sparqlEndpoints.http[0]. graphStoreEndpointUrl

Valid values NONE, REWRITE_FROM

Use this property to specify the authorization strategy as explained in section .Authorization strategies

Property sparqlEndpoints.http[0].queryEndpointUrl

Default none

Required no

Conflicts with none

Valid values string

Use this property to configure the endpoint to which SPARQL 1.1 queries are sent. At least one of , and queryEndpointUrl updateEndpointUrl grap
 must be provided.hStoreEndpointUrl

Property sparqlEndpoints.http[0].updateEndpointUrl

Default none

Note: The authorization strategy is not supported for requests while using a remote HTTP endpoint. REWRITE_FROM SPARQL 1.1 Graph Store
Do not configure a or use the authorization strategy .graphStoreEndpointUrl NONE

https://www.w3.org/TR/sparql11-protocol/
https://www.w3.org/TR/sparql11-http-rdf-update/

Required no

Conflicts with none

Valid values string

Use this property to configure the endpoint to which SPARQL 1.1 update queries are sent. At least one of , queryEndpointUrl updateEndpointUrl
and must be provided.graphStoreEndpointUrl

Property sparqlEndpoints.http[0].graphStoreEndpointUrl

Default none

Required no

Conflicts with sparqlEndpoints.http[0]. authorization

Valid values string

Use this property to configure the endpoint to which SPARQL 1.1 Graph Store Protocol requests are sent. Provide at least one of the properties queryEnd
, or .pointUrl updateEndpointUrl graphStoreEndpointUrl

Property sparqlEndpoints.http[0].username

Default none

Required only if is providedpassword

Conflicts with password (see "Required")

Valid values string

Basic authentication is used if this parameter is provided.

Property sparqlEndpoints.http[0].password

Default none

Required only if is providedusername

Conflicts with username (see "Required")

Valid values string

Basic authentication is used if this parameter is provided.

Configuration example

sparqlEndpoints:
 http:
 - id: remote
 authorization: NONE
 queryEndpointUrl: http://remote.server/query
 updateEndpointUrl: http://remote.server/update
 graphStoreEndpointUrl: http://remote.server/gsp

In-memory

You can configure one ore more in-memory SPARQL endpoints. Based on , in-memory endpoints do not provide persistent storage. Hence, Jena Models
shutting down a DataPlatform configured with an in-memory endpoint deletes your data and therefore you should use it only for testing purposes.

In-memory configuration

sparqlEndpoints
inMemory

id
authorization
files

Property sparqlEndpoints.inMemory[0].id

https://tools.ietf.org/html/rfc2617#section-2
https://tools.ietf.org/html/rfc2617#section-2
https://jena.apache.org/

Default none

Required yes

Conflicts with other IDs, must be unique

Valid values string

Use this property to specify the ID of the in-memory endpoint. This ID can be user-defined and must be unique.

Property sparqlEndpoints.inMemory[0].authorization

Default NONE

Required no

Conflicts with none

Valid values NONE, REWRITE_FROM

Use this property to specify the authorization strategy as explained in section Authorization strategies.

Property sparqlEndpoints.inMemory[0].files

Default none

Required no

Conflicts with none

Valid values list of files in form of file URI scheme or absolute filename

Use this property to preload the endpoint with local or remote .rdf files. Specify the property with :file URI scheme

files:
- file://hostname/path/to/file1.ttl
- file://hostname/path/to/file2.ttl

Or specify it by using an absolute file path:

files:
- /home/user/path/to/file1.ttl
- /home/user/path/to/file2.ttl

Configuration example

sparqlEndpoints:
 inMemory:
 - id: inMemory
 authorization: NONE
 files:
 - example_data.trig

OWL imports resolution

DataPlatform supports the interpretation of statements. That means if a graph imports a second graph, the data of the second graph is owl:imports
included when querying the first graph. This applies both to as well as by extending the dataset SPARQL 1.1 Queries SPARQL 1.1 Update queries
definition of the query: for selecting queries, by extending the and dataset definition, for update queries by extending the and FROM FROM NAMED USING US

 dataset definition.ING NAMED

An OWL imports statement’s subject URI must be equal to the graph URI containing it, otherwise it is ignored.

The example below shows a OWL imports statement in syntax:TriG

<urn:graphA> {
 <urn:graphA> <owl:imports> <urn:graphB> .
}

https://en.wikipedia.org/wiki/File_URI_scheme
https://www.w3.org/TR/sparql11-query/#specifyingDataset
https://www.w3.org/TR/sparql11-update/#deleteInsert
https://www.w3.org/TR/trig/

Property sparqlEndpoints.owlImportsResolution

Default true

Required no

Conflicts with none

Valid values Boolean

Use this property to enable OWL imports resolution.

sparqlEndpoints:
 owlImportsResolution: false

Making a SPARQL endpoint accessible via HTTP

If you want to use a configured SPARQL endpoint via the HTTP or , add the appropriate ID SPARQL 1.1 Protocol SPARQL 1.1 Graph Store HTTP Protocol
to the list of SPARQL proxies.

HTTP SPARQL endpoint configuration

Property proxy.endpointIds[0]

Default default

Required no

Conflicts with none

Valid values list of strings

Use this property to specify which s should be proxied. Only valid IDs previously configured as SPARQL endpoint SPARQL endpoint sparqlEndpoints.
 can be used.ENDPOINT_TYPE[i].id

Property proxy.labelProperties[0]

Default http://www.w3.org/2000/01/rdf-schema#label

Required no

Conflicts with none

Valid values list of strings

Use this property to specify which RDF properties should be used to provide label values when matching IRIs against a search term during rewriting SELECT
-queries.

Configuration example

proxy:
 endpointIds:
 - my_virtuoso
 labelProperties:
 - "http://www.w3.org/2000/01/rdf-schema#label"
 - "http://www.w3.org/2004/02/skos/core#prefLabel"
 - "http://www.w3.org/2004/02/skos/core#altLabel"
 languagePreferences:
 - "en"
 - ""

Note: This configuration property affects

modification of -queries for search triggered by the query parameter (see section SELECT search-string POST - SPARQL query via
 of the).HTTP POST Developers Manual

Results of -queries when the resolveLabels property is set to SELECT LABELS

https://www.w3.org/TR/sparql11-protocol/
https://www.w3.org/TR/sparql11-http-rdf-update/

Property proxy.languagePreferences[0]

Default en, ``

Required no

Conflicts with none

Valid values list of strings

The following example showcases a setup in which for each Resource all , Literals with uage , then and in the end those without a rdfs:label lang es en
language are evaluated. If nothing nothing matches here, is examined in the same way.skos:prefLabel

Configuration example

proxy:
 endpointIds:
 - my_stardog
 labelProperties:
 - "http://www.w3.org/2000/01/rdf-schema#label"
 - "http://www.w3.org/2004/02/skos/core#prefLabel"
 languagePreferences:
 - "es"
 - "en"
 - ""

Authentication

Access to DataPlatform resources is restricted using .OAuth 2.0

OAuth 2.0 resource server

In order to protect access to it’s resources, DataPlatform acts as an accepting and responding to a protected resource request OAuth 2.0 resource server
using a .JSON Web Token (JWT)

The OAuth 2.0 specification as well as the JSON Web Token specification don’t define any mandatory claims to be contained in a JWT access token.
However, if the property is set, the (issuer) claim is required to be contained in spring.security.oauth2.resourceserver.jwt.issuer-uri iss
the JWT. It’s value must be equal to the configured issuer URI. Additionally, in order to identify the requesting principal, either the username claim or the
clientId claim must be contained in the JWT.

Resource server configuration

spring
security

oauth2
resourceserver

anonymous
jwt

issuerUri
jwkSetUri
claims

username
groups
clientId

Property spring.security.oauth2.resourceserver.anonymous

Default false

Required no

Conflicts with none

Valid values Boolean

Use this property to allow anonymous access to protected resources.

Specifies base language preferences for this instance. This configuration property affects results of -queries when the Note: SELECT
resolveLabels property is set to .LABELS

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749#section-1.1
https://tools.ietf.org/html/rfc7519

Property spring.security.oauth2.resourceserver.jwt.issuerUri

Default none

Required yes

Conflicts with spring.security.oauth2.resourceserver.jwt.jwkSetUri

Valid values string

Use this property to specify the URI that an OpenID Connect Provider asserts as its Issuer Identifier if it supports OpenID Connect discovery.

If this property is set, the (issuer) claim is required to be contained in the JWT. The value of the claim has to be the same value as the configured iss
issuer URI.

Property spring.security.oauth2.resourceserver.jwt.jwkSetUri

Default none

Required yes

Conflicts with spring.security.oauth2.resourceserver.jwt.issuerUri

Valid values string

Use this property to specify the JSON Web Key URI to use to verify the JWT token.

Property spring.security.oauth2.resourceserver.jwt.claims

Use the following configuration options to specify the claims conveyed by a JWT used to access protected resources of DataPlatform. If nothing is
configured, a default configuration is provided with the following configuration:

spring:
 security:
 oauth2:
 resourceserver:
 jwt:
 claims:
 username: preferred_username
 groups: groups
 clientId: clientId

Property spring.security.oauth2.resourceserver.jwt.claims.username

Default preferred_username

Required no

Conflicts with none

Valid values string

Use this property to specify the claim providing the account name of the user accessing a protected resource.

Property spring.security.oauth2.resourceserver.jwt.claims.groups

Default groups

Required no

Conflicts with none

Valid values string | list of strings

Use this property to specify the claim identifying the roles (authorities) of the user accessing a protected resource.

Property spring.security.oauth2.resourceserver.jwt.claims.clientId

Note: If the authorization server is down when DataPlatform queries it (given appropriate timeouts), then startup will fail. Also, if the
authorization server doesn’t support the Provider Configuration endpoint, or if DataPlatform must be able to start up independently from the
authorization server, use the property jwk-set-uri instead.

Default clientId

Required no

Conflicts with none

Valid values string

Use this property to specify the claim providing the OAuth 2.0 client ID to which a token was issued.

Configuration example

spring:
 security:
 oauth2:
 resourceserver:
 anonymous: true
 jwt:
 issuerUri: http://keycloak/auth/realms/cmem

Authorization

DataPlatform supports authorization of RDF named graphs and actions. Authorization for clients and/or users is specified by the access conditions model
which is described in section . You can configure root access for a specific group of users who are given unrestricted access regardless Access conditions
of the defined access conditions. Refer to section for more information.Root Access

Authorization configuration

authorization
rootAccess
abox

adminGroup
publicGroup
anonymousUser
prefix

accessConditions
url
endpointId
graph

Property authorization.rootAccess

Default true

Required no

Conflicts with none

Valid values Boolean

Use this property to enable or disable root access (see section).Root access

Property authorization.abox

Use the following configuration options to specify values used by DataPlatform when working with RDF data, such as default URIs and prefixes.

Property authorization.abox.adminGroup

Default elds-admins

Required no

Conflicts with none

Valid values string

Use this property to configure the group that gets root access if enabled (see section).Root access

Property authorization.abox.publicGroup

Default urn:elds-backend-public-group

Required no

Conflicts with none

Valid values string

Use this property to configure the URI of the public user group (see section).Public access

Property authorization.abox.anonymousUser

Default urn:elds-backend-anonymous-user

Required no

Conflicts with none

Valid values string

Use this property to configure the URI of the public user (see section).Public access

Property authorization.abox.prefix

Default https://ns.eccenca.com/

Required no

Conflicts with none

Valid values string

Use this property to set the namespace of URIs created by DataPlatform.

Property authorization.accessConditions

Property authorization.accessConditions.url

Default none

Required no

Conflicts with endpointId, graph

Valid values string

Use this property to set the URL of the access conditions model file. This can be either a remote () or a local () .rdf file. Refer to http://... file:...
section for more information on the access conditions model.Access conditions

Property authorization.accessConditions.endpointId

Default none

Required only if providedgraph

Conflicts with url

Valid values string

Note: If you change this property, you also need to change existing URI descriptions and existing access conditions.

Note: If you change this property, you also need to change existing URI descriptions and existing access conditions.

Note: If you change this property, you also need to change the corresponding shape definitions for access conditions (more precisely, the URI
template), as well as existing URI descriptions and existing access conditions.

Note: The access conditions model is empty if you provide no configuration in this section.

Use this property to set the endpoint containing the access conditions model graph specified by . The authorization.accessConditions.graph
endpoint ID must be one of the configured endpoints (see section). Refer to section for more information on the SPARQL endpoints Access conditions
access conditions model.

Property authorization.accessConditions.graph

Default urn:elds-backend-access-conditions-graph

Required only if providedendpointId

Conflicts with url

Valid values string

Use this property to set the graph containing the access conditions model.

Refer to section for more information on the access conditions model.Access conditions

Configuration example

authorization:
 rootAccess: true
 abox:
 prefix: https://ns.eccenca.com/
 anonymousUser: urn:elds-backend-anonymous-user
 publicGroup: urn:elds-backend-public-group
 adminGroup: elds-admins
 accessConditions:
 endpointId: default
 graph: http://example.org/accessConditions

Root access

DataPlatform allows root access for a specific administrator group (see property authorization.abox.adminGroup). You can toggle root access using the
property . Regardless of the access conditions declared in the access conditions model (see), all authorization.rootAccess Access conditions
members of the administrator group are permitted to read and write all graphs of all endpoints and are allowed to perform all actions.

For example, the following configuration grants root access to any user in the group :admins

authorization:
 rootAccess: true
 abox:
 adminGroup: admins

For a detailed explanation of the configuration options used, refer to the sections and .Authorization configuration In-memory provider

Access conditions

Access conditions are defined in the access conditions model, an RDF named graph containing instances of the class OWL eccauth:AccessCondition
defined by the .eLDS Auth schema Ontology

An access condition consists of the following elements:

type: Only RDF resources of type are valid access conditions.eccauth:AccessCondition
requirements: Conditions to be fulfilled by the logged-in user such as group membership. All conditions must be fulfilled, otherwise the access
condition is not fulfilled.
grants: Actions or data the user is allowed to execute and/or access such as accessing a specific API or reading a graph.

For simplicity, the syntax is used in the following examples, but you can define the access conditions model in any RDF serialization.Turtle serialization

Predefined URIs

DataPlatform recognizes a set of specific URIs with a precise meaning, as listed below:

Note: If you change this property, you also need to change the corresponding shape definitions for access conditions (more precisely, the UI
SPARQL queries).

https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/turtle/

urn:elds-backend-all-graphs: Represents all RDF named graphs. You can use it as the object of either the or the eccauth:readGraph e
 property to enable read or write access for all graphs.ccauth:writeGraph

urn:elds-backend-all-actions: Represents all actions. You can use it as object of the property to allow eccauth:allowedAction
performing all actions.
urn:elds-backend-public-group: Represents the group which every user is member of. You can use it as object of the eccauth:

 property to define access conditions for all users including anonymous users. Refer to section for more requiresGroup Public Access
information about public/anonymous access.
urn:elds-backend-anonymous-user: Represents the anonymous user account. Refer to section for more information about Public Access
public/anonymous access.
urn:elds-backend-actions-auth-access-control: Represents the action needed to use the Authorization management API (see the
Developer Manual). You can use it as object of the property to grant access to the Authorization management API if eccauth:allowedAction
the user fulfills the access condition.

Access condition URIs

You have to define access condition as named individuals. Blank nodes are not allowed.

This example shows how an access condition URI and type definition should look like:

@prefix : <https://ns.eccenca.com/> .
@prefix eccauth: <https://vocab.eccenca.com/auth/> .

:SampleAccessCondition a eccauth:AccessCondition .

Access condition requirements

You can define requirements for an access condition. The requesting user must fulfill the complete set of requirements in order to get granted the specified
rights. If you define no requirements for an access condition it is automatically fulfilled by every user. Refer to section of chapter Properties eLDS Auth

 for a complete list of available requirements that you can specify.schema ontology

Group specific access conditions

To restrict an access condition to a specific group of users, use the property . The following example shows how to restrict an eccauth:requiresGroup
access condition to a specific group of users:

@prefix : <https://ns.eccenca.com/> .
@prefix eccauth: <https://vocab.eccenca.com/auth/> .

:SampleAccessCondition a eccauth:AccessCondition ;
 eccauth:requiresGroup :ExampleUserGroup ;
 eccauth:readGraph :ExampleGraph ;
.

The example defines that only users which are member of the group can read the graph .:ExampleUserGroup :ExampleGraph

Endpoint specific access conditions

By default, every defined access condition applies to all configured endpoints. If you need to define access conditions for a specific endpoint, use the
property .eccauth:requiresEndpoint

@prefix : <https://ns.eccenca.com/> .
@prefix eccauth: <https://vocab.eccenca.com/auth/> .

:SampleAccessCondition a eccauth:AccessCondition ;
 eccauth:requiresEndpointId "exampleEndpoint" ;
 eccauth:requiresGroup :ExampleUserGroup ;
 eccauth:readGraph :ExampleGraph ;
.

The access condition as shown in the example above applies only to the endpoint with the ID . Additionally, all access conditions exampleEndpoint
without an property will also match.eccauth:requiresEndpointId

Note: LDAP or in-memory group and user names are and concatenated with the prefix of the property URL-encoded authorization.abox.
 for matching against groups referenced in the access conditions model. For example, the URI corresponding to the group with ID 'Test:prefix

Group' is .:Test%3AGroup

Note: This only affects interactions with the configured endpoint (see). The access condition is ignored in any other case.SPARQL Endpoints

https://tools.ietf.org/html/rfc3986#page-12

Access condition grants

You can define permissions granted to users which fulfill an access condition. Refer to section of chapter for a Properties eLDS Auth schema ontology
complete list of available grants that you can specify. Continuing the previous example, this one demonstrates how to specify multiple grants:

@prefix : <https://ns.eccenca.com/> .
@prefix eccauth: <https://vocab.eccenca.com/auth/> .

:SampleAccessCondition a eccauth:AccessCondition ;
 eccauth:requiresEndpointId "exampleEndpoint" ;
 eccauth:requiresGroup :ExampleUserGroup ;
 eccauth:writeGraph :ExampleGraph ;
 eccauth:readGraph <urn:elds-backend-all-graphs> ;
.

This access condition defines two grants for the endpoint to all users of the group :exampleEndpoint :ExampleUserGroup

Users can modify the graph.:ExampleGraph
Users can read from all graphs.

Adding new access conditions during runtime

The Access Conditions Management endpoint (see section of the Developer Manual) allows adding Authorization and authentication management API
new access conditions if the requesting user is allowed to. This feature is only enabled if an endpoint is used as the store for the access conditions model
(see properties and). A configuration using a authorization.accessConditions.endpointId authorization.accessConditions.graph
local access condition model file is read-only.

For example, consider the following existing access condition:

@prefix : <https://ns.eccenca.com/> .
@prefix eccauth: <https://vocab.eccenca.com/auth/> .

:AllowExampleGraphsGrant a eccauth:AccessCondition ;
 eccauth:requiresGroup :ExampleUserGroup ;
 eccauth:grantWriteGraphPattern "http://example.org/*" ;
.

This access condition allows a user of the group to add a new access condition granting write access to any graph with a URI :ExampleUserGroup
starting with , as for example:http://example.org/

@prefix : <https://ns.eccenca.com/> .
@prefix eccauth: <https://vocab.eccenca.com/auth/> .

:NewAccessCondition a eccauth:AccessCondition ;
 eccauth:writeGraph <http://example.org/ExampleGraph> ;
.

Refer to section of the Developer Manual for more information on the functionality and restrictions of Authorization and authentication management API
this feature.

Public access

DataPlatform allows public (unauthenticated) access.

Therefore the application uses a specific user group - the public group () - which any user belongs to including urn:elds-backend-public-group
unauthenticated/anonymous user. To configure the URI of the public group use the property .authorization.abox.publicGroup

To define publicly available graphs and/or actions you need to declare an access condition which requires the public group. Furthermore, you can define
additional requirements for the public group like the restriction to a specific endpoint.

@prefix : <https://ns.eccenca.com/> .
@prefix eccauth: <https://vocab.eccenca.com/auth/> .

:PublicAccessCondition a eccauth:AccessCondition ;
 eccauth:requiresGroup <urn:elds-backend-public-group> ;
 eccauth:readGraph :PublicGraph ;

.

:PublicAccessConditionExampleEndpoint a eccauth:AccessCondition ;
 eccauth:requiresEndpointId "exampleEndpoint" ;
 eccauth:requiresGroup <urn:elds-backend-public-group> ;
 eccauth:readGraph :ExampleGraph ;
.

In the example shown above, any user can read the graph in every configured endpoint without further limitations (as stated by :PublicGraph :
). Additionally, any user can read the graph of the endpoint .PublicAccessCondition :ExampleGraph exampleEndpoint

eLDS Auth schema ontology

The eLDS Auth schema ontology is a vocabulary for context-sensitive authorization of RDF named graphs and arbitrary actions. You can use it to create
access conditions defining requirements which must be fulfilled to get certain grants. The delegation of grants is based on a whitelist. That means a user is
granted if the conjunction of requirements of an access condition is fulfilled. In the case of DataPlatform the vocabulary is utilized to grant read and write
access to RDF named graphs and to allow the execution of actions.

Namespace https://vocab.eccenca.com/auth/

Preferred prefix eccauth

Example usage

The following example shows how to use the vocabulary to grant access to an RDF named graph:

@prefix : <https://ns.eccenca.com/> .
@prefix eccauth: <https://vocab.eccenca.com/auth/> .

:AccessConditionX a eccauth:AccessCondition ;
 eccauth:requiresGroup :GroupUsers ;
 eccauth:readGraph :GraphUserData .

:AccessConditionY a eccauth:AccessCondition ;
 eccauth:requiresGroup :GroupAdmins ;
 eccauth:writeGraph :GraphUserData .

The example describes two access conditions: * grants read access to the graph for all :AccessConditionX http://example.org/GraphUserData
users of the group . * grants write access to the same graph but only for users of the group .:GroupUsers :AccessConditionY :GroupAdmins

Classes

eccauth:Principal
A principal can be any entity, such as an individual, a group, etc.
eccauth:Account
The class of concrete principals which can be authenticated.
eccauth:Group
A group represents a collection of accounts.
eccauth:AccessCondition
An access condition defines a set of requirements which must be fulfilled by a session to get specified grants. The set of requirements is
considered a conjunction.
eccauth:Session
A session is a period of time where an account is successfully authenticated. It provides information about who is authenticated, how and when
authentication was established.
eccauth:Graph
A set of triples according to the RDF 1.1 specification.
eccauth:Action
An action defines an activity or function.

Properties

eccauth:memberOf
Indicates the membership of an account to a group.
eccauth:openedBy
The account which is the originator of a session.
eccauth:hasAttribute
Super property of all properties used to define session characteristics. Do not use this property directly, use appropriate sub-properties instead.
eccauth:hasEndpointId
The ID of the endpoint the session applies for.
eccauth:requiresAttribute
Super property of all properties used to define requirements of an access condition. Do not use this property directly, use appropriate sub-

properties instead. The set of object values bound by sub-properties of this property must be met as conjunction in order to fulfill the requirements
of an access condition.
eccauth:requiresGroup
The group the account must be member of to meet the access condition.
eccauth:requiresAccount
A specific account required by the access condition.
eccauth:requiresEndpointId
The ID of the endpoint needed to meet the access condition.
eccauth:isAllowed
Super property of all properties used to define grants if the requirements of an access condition are met. Do not use this property directly, use
appropriate sub-properties instead.
eccauth:readGraph
Grants read access to a graph.
eccauth:writeGraph
Grants read/write access to a graph.
eccauth:allowedAction
Grants permission to execute an action.
eccauth:grantReadGraphPattern
Grants management of conditions granting read access on graphs matching the defined pattern. A pattern consists of a constant string and a
wildcard () at the end of the pattern or the wildcard alone. Examples: matches any string starting with * http://example.org/* http://

, matches the exact string and matches any string.example.org/ urn:r urn:r *
eccauth:grantWriteGraphPattern
Grants management of conditions granting write access on graphs matching the defined pattern. Notice that write grant allowance implies read
grant allowance. A pattern consists of a constant string and a wildcard () at the end of the pattern or the wildcard alone. Examples: * http://exa

 matches any string starting with , matches the exact string and matches any string.mple.org/* http://example.org/ urn:r urn:r *
eccauth:grantAllowedActionPattern
Grants management of conditions granting action allowance for actions matching the defined pattern. A pattern consists of a constant string and a
wildcard () at the end of the pattern or the wildcard alone. Examples: matches any string starting with * http://example.org/* http://

, matches the exact string and matches any string.example.org/ urn:r urn:r *

Application logging

By default, DataPlatform only logs to the console. You can change the log level or configure logging into a file.

There are multiple levels of logging you can choose from that are explained in the table below.

Level Description

TRACE The TRACE level designates informational events of very low importance.

DEBUG The DEBUG level designates informational events of lower importance.

INFO The INFO level designates informational messages highlighting overall progress of the application.

WARN The WARN level designates potentially harmful situations.

ERROR The ERROR level designates error events which may or not be fatal to the application.

The levels can also be configured on runtime via the HTTP endpoint as described in section of the Developer Manual.loggers Application loggers

Application logging configuration

Property logging.level.root

Default WARN

Required no

Conflicts with none

Valid values TRACE, , , , , DEBUG INFO WARN ERROR OFF

Use this property to change the root log level to one of the available levels.

Property logging.level.[PACKAGE]

Default level from logging.level.root

Required no

Conflicts with none

Valid values TRACE, , , , , DEBUG INFO WARN ERROR OFF

Use this property to specify log levels from individual packages. Packages that are not configured individually inherit the logging level of the logging.
 property.level.root

Property logging.file

Default none

Required no

Conflicts with none

Valid values string (file path)

Use this property to specify where you want to store your logging file. Specifying a file leads to both, logging to standard output and the file.

File output creates an auto-rotating file with 10 MB file size each.

Configuration example

logging:
 level:
 root: WARN
 com.eccenca.elds.backend: DEBUG
 org.springframework: INFO
 file: /var/logs/dataplatform.log

Application logging with Logback

Logging for DataPlatform can also be configured with , which, for example, allows a more granular control on file rolling strategies. For further Logback
information on configuration options, refer to the Logback’s manual section and the Spring Boot’s manual Configuration Configure Logback for Logging
section.

Property logging.configuration

Default none

Required no

Conflicts with none

Valid values string (file path)

Use this property to specify where the Logback configuration is located.

Configuration example

logging:
 configuration: ${ELDS_HOME}/etc/dataplatform/logback.xml

The following example file defines a rolling file strategy where files are rotated on a time base (1 day) with a limit of 7 files, which means logback.xml
that the logging files contain a log history of a maximum of 1 week.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <appender name="TIME_BASED_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>/opt/elds/var/log/dataplatform.log</file>
 <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
 <!-- daily rollover, history for 1 week -->
 <fileNamePattern>/opt/elds/var/log/dataplatform.%d{yyyy-MM-dd}.log</fileNamePattern>
 <maxHistory>7</maxHistory>
 </rollingPolicy>
 <encoder>
 <pattern>%d{yyyy-MM-dd HH:mm:ss} [%thread] %-5level %logger{36} - %msg%n</pattern>
 </encoder>
 </appender>
 <logger name="com.eccenca" level="INFO">
 <appender-ref ref="TIME_BASED_FILE" />

https://logback.qos.ch/
https://logback.qos.ch/manual/configuration.html
https://docs.spring.io/spring-boot/docs/2.1.8.RELEASE/reference/htmlsingle/#howto-configure-logback-for-logging

 </logger>
</configuration>

Audit trail logging

DataPlatform is able to log the access of each user to named graphs in form of an audit trail log under the logger name .audit

Audit trail logging configuration

auditTrail
enabled
auditedGraphs

Property auditTrail.enabled

Default false

Required no

Conflicts with none

Valid values Boolean

Use this property to enable logging of read and write access to every graph access. If is specified, only those graphs are auditTrail.auditedGraphs
logged.

Property auditTrail.auditedGraphs

Default none

Required no

Conflicts with none

Valid values Boolean

Use this property to specify graphs whose read and write access you want to be logged. Omit this value to log access to all graphs.

Configuration example

auditTrail:
 enabled: true
 auditedGraphs:
 - "example.org/data"
 - "aksw.org"

Audit log output structure

1999-03-14 13:37:08.015 INFO 80085 --- [nio-9090-exec-2] audit : Graph access: user=urn:user, action=read,
graph=urn:graph

As shown in the log output example above, every log contains the users’ URI, the action (read or write) and the affected graphs.

Every access attempt to an audited graph is logged regardless of access control. Additionally, each unauthorized graph access is logged, leading to two
log entries: one for the graph access itself and one for the reason why it was unauthorized:

1999-03-14 13:37:08.015 INFO 80085 --- [nio-9090-exec-2] audit : Graph access: user=urn:user, action=read,
graph=urn:graph
1999-03-14 13:37:08.015 INFO 80085 --- [nio-9090-exec-2] audit : Unauthorized graph access: user=urn:user,
action=read, graph=urn:graph

Note: If audit trail logging is enabled, RDF upload over the Graph Store Protocol interface is limited to triple formats. Any attempt to upload a
quad format results in an .HTTP 415 error

https://tools.ietf.org/html/rfc2616#section-10.4.16

In the case that a user is allowed to and the SPARQL query does not define an RDF dataset, the keyword is logged, since all graphs read all graphs ALL
in the store are queried:

1999-03-14 13:37:08.015 INFO 80085 --- [nio-9090-exec-2] audit : Graph access: user=urn:user, action=read,
graph=ALL

For SPARQL update operations that do not define an RDF dataset and the user is allowed to , the keyword is logged, since the write all graphs DEFAULT
default graph of the store is presumed:

1999-03-14 13:37:08.015 INFO 80085 --- [nio-9090-exec-2] audit : Graph access: user=urn:user, action=read,
graph=DEFAULT

Embedded Tomcat

The URL under which DataPlatform is accessible has the following form: PROTOCOL://HOST\:PORT/CONTEXT_PATH

where:

PROTOCOL: or depending on SSL configuration (see section)http https SSL support
HOST: The hostname pointing to the server where DataPlatform is installed
PORT: The TCP port where the embedded server is available (see the property server.port)
CONTEXT_PATH: The context path under which DataPlatform is available (see the property server.servlet.contextPath)

Embedded Tomcat configuration

server
port
servlet

contextPath

Property server.port

Default 9090

Required no

Conflicts with none

Valid values integer

Use this property to set the TCP port where the embedded server is available.

Property server.servlet.contextPath

Default ’’

Required no

Conflicts with none

Valid values string

Use this property to define the context path under which DataPlatform is available. If this property is provided, use a leading slash.

Configuration example

server:
 port: 9090
 servlet:
 contextPath: /dataplatform

Caching

DataPlatform provides caching support which is enabled by default with an in-memory cache.Caffeine

Caching configuration

https://docs.spring.io/spring-boot/docs/2.1.8.RELEASE/reference/htmlsingle/#boot-features-caching-provider-caffeine

spring
cache

type
redis

host
port

Property spring.cache.type

Default CAFFEINE

Required no

Conflicts with none

Valid values CAFFEINE, REDIS, NONE

Use this property to define the type of cache to use. The default type () provides an in-memory cache suitable for simple standalone installations CAFFEINE
or test deployments.

Set to use a . Use this cache type in scenarios with higher scalability demands or clustered setups. If this cache type is used, you must REDIS Redis cache
set the spring.cache.redis.host and spring.cache.redis.port properties, too.

To disable caching, set the type to (not recommended).NONE

Property spring.cache.redis.host

Default none

Required only if providedspring.cache.type=REDIS

Conflicts with none

Valid values string

Use this property to set the hostname where the Redis cache is available.

Property spring.cache.redis.port

Default none

Required only if providedspring.cache.type=REDIS

Conflicts with none

Valid values integer

Use this property to set the TCP port where the Redis cache is available.

Configuration example

spring:
 cache:
 type: REDIS
 redis:
 host: localhost
 port: 6379

HTTPS support

Standalone mode

If DataPlatform is executed in standalone mode (see), the embedded servlet container can be configured to support one-way (server Standalone
certification) or two-way (server and client certification) SSL. A KeyStore is required for one-way SSL and both a KeyStore as well as a TrustStore are
required for two-way SSL.

Refer to the to see how to create KeyStore and TrustStore files.Oracle documentation

SSL support configuration

server
ssl

https://redis.io
https://docs.oracle.com/cd/E19509-01/820-3503/6nf1il6er/index.html

key-store
key-store-password
client-auth

Property server.ssl.key-store

Default none

Required no

Conflicts with none

Valid values string

Use this property to define the path to the KeyStore used for one-way or two-way SSL authentication.

In case of two-way authentication, a TrustStore must also be configured. This configuration must be provided as Java system properties either directly in
the execution command or as part of the environment variable, e.g.:JAVA_TOOL_OPTIONS

JAVA_TOOL_OPTIONS=${JAVA_TOOL_OPTIONS} -Djavax.net.ssl.trustStore=path_to_trust_store.jks -Djavax.net.ssl.
trustStorePassword=trust_store_password

Property server.ssl.key-store-password

Default none

Required only if is providedkey-store

Conflicts with none

Valid values string

Use this property to set the password to unlock the KeyStore used for one-way or two-way SSL authentication.

Property server.ssl.client-auth

Default none

Required no

Conflicts with none

Valid values none, , NEED WANT

Use this property to define the client identification policy.

If is set, client identification is optional. If is set, client identification is mandatory, so unauthenticated clients are refused.WANT NEED

Configuration example

server:
 ssl:
 key-store: ./key-store.jks
 key-store-password: jks-password
 client-auth: NEED

Proxy deployment

If DataPlatform is running behind a proxy server (e.g. Apache) then you must use all of the following properties to enforce HTTPS:

server
tomcat

remoteIpHeader
protocolHeader

security
requireSsl

property server.tomcat.remoteIpHeader

default none

required no

conflicts with none

valid values string

Use this property to set the request header which is required to identify the originating IP address of the client connecting to DataPlatform through an
HTTP proxy.

property server.tomcat.protocolHeader

default none

required no

conflicts with none

valid values string

Use this property to set the request header which is required to identify the originating protocol of an HTTP request through an HTTP proxy.

property security.requireSsl

default false

required no

conflicts with none

valid values Boolean

Use this property to enable secure channels for all requests.

Configuration recommendation

server:
 tomcat:
 remoteIpHeader: x-forwarded-for
 protocolHeader: x-forwarded-proto

security:
 requireSsl: true

Cross-origin resource sharing (CORS)

DataPlatform supports (CORS).Cross-origin resource sharing

CORS configuration

http
cors

allowedOrigins
allowedMethods
allowedHeaders
exposedHeaders
allowCredentials
maxAge

Property http.cors.allowedOrigins

Default *

Required no

Conflicts with none

Valid values list of strings

Note: This configuration recommendation provides settings for headers most commonly used by proxies. Make sure to add all three properties
in order to enforce HTTPS.

https://www.w3.org/TR/cors/

Use this property to define the list of allowed origins. The values must be either specific origins, e.g. , or for all origins.http://example.org *

Property http.cors.allowedMethods

Default OPTIONS, HEAD, GET, POST, PUT, DELETE, PATCH

Required no

Conflicts with none

Valid values list of strings

Use this property to define the list of allowed HTTP methods. The special value allows all methods.*

Property http.cors.allowedHeaders

Default Authorization, X-Requested-With, Content-Type, Content-Length, ETag

Required no

Conflicts with none

Valid values list of strings

Use this property to define the list of allowed HTTP headers. The special value may be used to allow all headers.*

Property http.cors.exposedHeaders

Default WWW-Authenticate, Link, ETag

Required no

Conflicts with none

Valid values list of strings

Use this property to define the list of headers that an actual response might have and can be exposed.

Property http.cors.allowCredentials

Default false

Required no

Conflicts with none

Valid values Boolean

Use this property to define whether the browser should send credentials, such as cookies along with cross domain requests.

Property http.cors.maxAge

Default 3600

Required no

Conflicts with none

Valid values non-negative integer

Use this property to define how long in seconds the response from a pre-flight request can be cached by clients.

Configuration example

http:
 cors:
 allowedOrigins:
 - http://example.org
 - https://example.com

File upload limits

You can increase DataPlatform’s maximal file upload size and request size.

File upload limits configuration

spring
http

multipart:
maxFileSize
maxRequestSize

Property spring.http.multipart.maxFileSize

Default 1024MB

Required no

Conflicts with none

Valid values string

Use this property to define the maximum size of an uploaded file in number of bytes. Values can use the suffixed "MB" or "KB" (e.g. '1024MB').

Property spring.http.multipart.maxRequestSize

Default 1024MB

Required no

Conflicts with none

Valid values string

Use this property to define the maximum size of HTTP request in number of bytes. Values can use the suffixed "MB" or "KB" (e.g. '1024MB').

Configuration example

spring:
 http:
 multipart:
 maxFileSize: 1024MB
 maxRequestSize: 1024MB

Network timeouts for proxied requests

If DataPlatform is accessed behind a HTTP server, you should increase the network timeout for proxied requests if large files uploads are expected.
Apache HTTP Server provides a which will most likely not be big enough for large file uploads.default timeout of 300 seconds

OpenAPI Specification and Swagger UI

You can activate endpoints to expose an compliant specification of the available DataPlatform APIs. Developers can make use of this information OpenAPI
to understand the API and to bootstrap client integration code.

OpenAPI Documentation

springdoc

api-docs

enabled

Property springdoc.api-docs.enabled

Default false

Required no

Conflicts with none

Note: If DataPlatform is deployed in a Servlet container, make sure to also configure support for large file sizes.

https://httpd.apache.org/docs/2.4/mod/mod_proxy.html#proxytimeout
https://swagger.io/specification/

Valid values true, false

Use this property to enable and expose endpoint that provide the OpenAPI compliant specification of the DataPlatform APIs. The following endpoints will
become available when this option is set to :true

<DATA_PLATFORM_URI>/v3/api-docs
<DATA_PLATFORM_URI>/v3/api-docs.yaml
<DATA_PLATFORM_URI>/v3/api-docs/swagger-config

Swagger UI

springdoc

swagger-ui

enabled

Property springdoc.swagger-ui.enabled

Default false

Required no

Conflicts with none

Valid values true, false

Use this property to enable and expose a that can be used to explore and interact with the APIs. The following endpoints will Swagger UI browser interface
become available when this option is set to :true

<DATA_PLATFORM_URI>/swagger-ui

Use your web browser to explore <DATA_PLATFORM_URI>/swagger-ui :

The servers URLs can be customized by setting the environment variable OPENAPI_SERVER_URLS n the machine or in the docker container that runs o
DataManager:

export OPENAPI_SERVER_URLS="https://my-custom.domain.com:443/dataplatform"

Configuration example

In order to activate OpenAPI Documentation and Swagger UI provide the following in your DataPlatform :application.yml

SpringDoc Endpoints
springdoc:

Note: Swagger UI requires the API-Documentation to be enabled as the ui is making use of the exposed specification.

https://swagger.io/tools/swagger-ui/

 swagger-ui:
 enabled: true
 api-docs:
 enabled: true

Activation with Environment Variables

Other than through the the endpoints can also be activated by setting the environment variables application.yml SPRINGDOC_SWAGGER_UI_ENABLED
and to n the machine or in the docker container that runs DataManager:SPRINGDOC_API_DOCS_ENABLED true o

export SPRINGDOC_SWAGGER_UI_ENABLED=true
export SPRINGDOC_API_DOCS_ENABLED=true

	.DataPlatform v22.1

